79 research outputs found

    Identifying component modules

    Get PDF
    A computer-based system for modelling component dependencies and identifying component modules is presented. A variation of the Dependency Structure Matrix (DSM) representation was used to model component dependencies. The system utilises a two-stage approach towards facilitating the identification of a hierarchical modular structure. The first stage calculates a value for a clustering criterion that may be used to group component dependencies together. A Genetic Algorithm is described to optimise the order of the components within the DSM with the focus of minimising the value of the clustering criterion to identify the most significant component groupings (modules) within the product structure. The second stage utilises a 'Module Strength Indicator' (MSI) function to determine a value representative of the degree of modularity of the component groupings. The application of this function to the DSM produces a 'Module Structure Matrix' (MSM) depicting the relative modularity of available component groupings within it. The approach enabled the identification of hierarchical modularity in the product structure without the requirement for any additional domain specific knowledge within the system. The system supports design by providing mechanisms to explicitly represent and utilise component and dependency knowledge to facilitate the nontrivial task of determining near-optimal component modules and representing product modularity

    Wolbachia in butterflies and moths: geographic structure in infection frequency.

    Get PDF
    INTRODUCTION: Butterflies and moths (Lepidoptera) constitute one of the most diverse insect orders, and play an important role in ecosystem function. However, little is known in terms of their bacterial communities. Wolbachia, perhaps the most common and widespread intracellular bacterium on Earth, can manipulate the physiology and reproduction of its hosts, and is transmitted vertically from mother to offspring, or sometimes horizontally between species. While its role in some hosts has been studied extensively, its incidence across Lepidoptera is poorly understood. A recent analysis using a beta-binomial model to infer the between-species distribution of prevalence estimated that approximately 40 % of arthropod species are infected with Wolbachia, but particular taxonomic groups and ecological niches seem to display substantially higher or lower incidences. In this study, we took an initial step and applied a similar, maximum likelihood approach to 300 species of Lepidoptera (7604 individuals from 660 populations) belonging to 17 families and 10 superfamilies, and sampled from 36 countries, representing all continents excluding Antarctica. RESULTS: Approximately a quarter to a third of individuals appear to be infected with Wolbachia, and around 80 % of Lepidoptera species are infected at a non-negligible frequency. This incidence estimate is very high compared to arthropods in general. Wolbachia infection in Lepidoptera is shown to vary between families, but there is no evidence for closely related groups to show similar infection levels. True butterflies (Papilionoidea) are overrepresented in our data, however, our estimates show this group can be taken as a representative for the other major lepidopteran superfamilies. We also show substantial variation in infection level according to geography - closer locations tend to show similar infection levels. We further show that variation in geography is due to a latitudinal gradient in Wolbachia infection, with lower frequencies towards higher latitudes. CONCLUSIONS: Our comprehensive survey of Wolbachia infection in Lepidoptera suggests that infection incidence is very high, and provides evidence that climate and geography are strong predictors of infection frequency.We thank the McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History for their continued support. This study was supported by the University of Florida Research Opportunity Seed Fund (ROSF) and the National Science Foundation grant number DEB-1354585 to AYK.This is the final published version. It first appeared at http://link.springer.com/article/10.1186%2Fs12983-015-0107-z

    Genetic Ancestry-Smoking Interactions and Lung Function in African Americans: A Cohort Study

    Get PDF
    Background: Smoking tobacco reduces lung function. African Americans have both lower lung function and decreased metabolism of tobacco smoke compared to European Americans. African ancestry is also associated with lower pulmonary function in African Americans. We aimed to determine whether African ancestry modifies the association between smoking and lung function and its rate of decline in African Americans. Methodology/Principal Findings: We evaluated a prospective ongoing cohort of 1,281 African Americans participating in the Health, Aging, and Body Composition (Health ABC) Study initiated in 1997. We also examined an ongoing prospective cohort initiated in 1985 of 1,223 African Americans in the Coronary Artery Disease in Young Adults (CARDIA) Study. Pulmonary function and tobacco smoking exposure were measured at baseline and repeatedly over the follow-up period. Individual genetic ancestry proportions were estimated using ancestry informative markers selected to distinguish European and West African ancestry. African Americans with a high proportion of African ancestry had lower baseline forced expiratory volume in one second (FEV1) per pack-year of smoking (-5.7 ml FEV1/ smoking pack-year) compared with smokers with lower African ancestry (-4.6 ml in FEV1/ smoking pack-year) (interaction P value = 0.17). Longitudinal analyses revealed a suggestive interaction between smoking, and African ancestry on the rate of FEV1 decline in Health ABC and independently replicated in CARDIA. Conclusions/Significance: African American individuals with a high proportion of African ancestry are at greater risk for losing lung function while smoking. © 2012 Aldrich et al

    Multigene phylogeny of the Mustelidae: Resolving relationships, tempo and biogeographic history of a mammalian adaptive radiation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adaptive radiation, the evolution of ecological and phenotypic diversity from a common ancestor, is a central concept in evolutionary biology and characterizes the evolutionary histories of many groups of organisms. One such group is the Mustelidae, the most species-rich family within the mammalian order Carnivora, encompassing 59 species classified into 22 genera. Extant mustelids display extensive ecomorphological diversity, with different lineages having evolved into an array of adaptive zones, from fossorial badgers to semi-aquatic otters. Mustelids are also widely distributed, with multiple genera found on different continents. As with other groups that have undergone adaptive radiation, resolving the phylogenetic history of mustelids presents a number of challenges because ecomorphological convergence may potentially confound morphologically based phylogenetic inferences, and because adaptive radiations often include one or more periods of rapid cladogenesis that require a large amount of data to resolve.</p> <p>Results</p> <p>We constructed a nearly complete generic-level phylogeny of the Mustelidae using a data matrix comprising 22 gene segments (~12,000 base pairs) analyzed with maximum parsimony, maximum likelihood and Bayesian inference methods. We show that mustelids are consistently resolved with high nodal support into four major clades and three monotypic lineages. Using Bayesian dating techniques, we provide evidence that mustelids underwent two bursts of diversification that coincide with major paleoenvironmental and biotic changes that occurred during the Neogene and correspond with similar bursts of cladogenesis in other vertebrate groups. Biogeographical analyses indicate that most of the extant diversity of mustelids originated in Eurasia and mustelids have colonized Africa, North America and South America on multiple occasions.</p> <p>Conclusion</p> <p>Combined with information from the fossil record, our phylogenetic and dating analyses suggest that mustelid diversification may have been spurred by a combination of faunal turnover events and diversification at lower trophic levels, ultimately caused by climatically driven environmental changes. Our biogeographic analyses show Eurasia as the center of origin of mustelid diversity and that mustelids in Africa, North America and South America have been assembled over time largely via dispersal, which has important implications for understanding the ecology of mustelid communities.</p

    ‘‘Beet-ing’’ the Mountain: A Review of the Physiological and Performance Effects of Dietary Nitrate Supplementation at Simulated and Terrestrial Altitude

    Get PDF
    Exposure to altitude results in multiple physiological consequences. These include, but are not limited to, a reduced maximal oxygen consumption, drop in arterial oxygen saturation, and increase in muscle metabolic perturbations at a fixed sub-maximal work rate. Exercise capacity during fixed work rate or incremental exercise and time-trial performance are also impaired at altitude relative to sea-level. Recently, dietary nitrate (NO3-) supplementation has attracted considerable interest as a nutritional aid during altitude exposure. In this review, we summarise and critically evaluate the physiological and performance effects of dietary NO3- supplementation during exposure to simulated and terrestrial altitude. Previous investigations at simulated altitude indicate that NO3- supplementation may reduce the oxygen cost of exercise, elevate arterial and tissue oxygen saturation, improve muscle metabolic function, and enhance exercise capacity/ performance. Conversely, current evidence suggests that NO3- supplementation does not augment the training response at simulated altitude. Few studies have evaluated the effects of NO3- at terrestrial altitude. Current evidence indicates potential improvements in endothelial function at terrestrial altitude following NO3- supplementation. No effects of NO3- supplementation have been observed on oxygen consumption or arterial oxygen saturation at terrestrial altitude, although further research is warranted. Limitations of the present body of literature are discussed, and directions for future research are provided

    Shared genetic risk between eating disorder- and substance-use-related phenotypes:Evidence from genome-wide association studies

    Get PDF
    First published: 16 February 202

    Genetic and Environmental Controls on Nitrous Oxide Accumulation in Lakes

    Get PDF
    We studied potential links between environmental factors, nitrous oxide (N2O) accumulation, and genetic indicators of nitrite and N2O reducing bacteria in 12 boreal lakes. Denitrifying bacteria were investigated by quantifying genes encoding nitrite and N2O reductases (nirS/nirK and nosZ, respectively, including the two phylogenetically distinct clades nosZ(I) and nosZ(II)) in lake sediments. Summertime N2O accumulation and hypolimnetic nitrate concentrations were positively correlated both at the inter-lake scale and within a depth transect of an individual lake (Lake Vanajavesi). The variability in the individual nirS, nirK, nosZ(I), and nosZ(II) gene abundances was high (up to tenfold) among the lakes, which allowed us to study the expected links between the ecosystem's nir-vs-nos gene inventories and N2O accumulation. Inter-lake variation in N2O accumulation was indeed connected to the relative abundance of nitrite versus N2O reductase genes, i.e. the (nirS+nirK)/nosZ(I) gene ratio. In addition, the ratios of (nirS+ nirK)/nosZ(I) at the inter-lake scale and (nirS+ nirK)/nosZ(I+II) within Lake Vanajavesi correlated positively with nitrate availability. The results suggest that ambient nitrate concentration can be an important modulator of the N2O accumulation in lake ecosystems, either directly by increasing the overall rate of denitrification or indirectly by controlling the balance of nitrite versus N2O reductase carrying organisms.Peer reviewe

    Coordination approaches and systems - Part II: an operational perspective

    No full text
    • 

    corecore